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Abstract 

The promotion of mammography greatly expanded screening coverage; however, 
increased cancer detection ignited concerns regarding overdiagnosis, thus prompting a 
reevaluation of mammography screening guidelines. We use medical records of all 
Singaporean women and plausibly exogenous variation of screening coverage to quantify the 
marginal efficacy of screening and the extent of overdiagnosis. Women predisposed to 
aggressive cancers are 4x more likely to screen than those susceptible to non-aggressive 
forms. Self-selection results in overdiagnosis and negligible marginal efficacy once 
population coverage exceeds 50%. Conversely, transitioning from biennial to annual 
screening and boosting coverage in underserved communities proves beneficial regardless of 
population coverage. 
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1 Introduction 
Economics and medical literature have long emphasized the importance of mammography 

screening as an effective means of preventing breast cancer deaths. However, because screening 

is costly and may result in false positives (see Rosenbaum, 2014)), the optimal screening approach 

is a continuing debate among academics and medical professionals. The issue focuses on two main 

aspects: who should be screened and at what age should screening begin. In other words, the 

policymakers strive to choose screening coverage1 (e.g., screening 60 vs. 80 percent of the 

population of a given age) and the cut-off age for screening recommendation (e.g., 40 vs. 45 years 

old), balancing the cost of screening and its effectiveness. 

Screening is effective if it reduces breast cancer-related mortality. If mammography is 

equally effective for all women, higher coverage rates and lower age mandates should reduce 

mortality. However, somewhat surprisingly, Bleyer and Welch (2012) find that the 1987-2008 

increase in U.S. mammography coverage from 29% to 67.1% results in a significant increase in 

early-stage cancer diagnosis but virtually no decrease in cancer deaths. The authors conclude 

that screening has little effect in lowering mortality because of overdiagnosis.2 These results 

provoked skepticism about recommending frequent screening for all women. For instance, in 

2009 U.S. Preventive Services Task Force altered the prior screening recommendation for 

women aged 50 to 74 from annual to biannual mammography.3  

In this paper, we revisit the effectiveness of mammography by evaluating the degree of 

overdiagnosis using the medical data of all Singaporean women aged 40 and older. We estimate 

the marginal benefit of screening and the extent of overdiagnosis as a function of screening 

coverage. Our estimates imply diminishing marginal screening efficacy and increasing 

overdiagnosis rates as screening coverage increases. In particular, expanding mammography 

screening is highly effective when the screening rates are low (between 0% and 35% of women 

screening once every two years) but has negligible effectiveness if the current screening rate is 

moderate or high (above 50% of women screening once every two years). In other words, 

 
1 Screening coverage is defined as a percentage of women that screened in the last two years. 
2 Overdiagnosis is defined as positive mammography, which detects cancer that would not progress to a 
late stage if left undiagnosed.  
3 See Nelson, Pappas, Cantor, Griffin, Daeges, and Humphrey (2016). 
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expanding screening coverage beyond 50% would predominantly lead to overdiagnosis, 

replicating the results of Bleyer and Welch (2012).4 

We show that self-selection to undergo screening based on a latent propensity to develop 

aggressive cancer is the mechanism underlying the diminishing returns from screening. 

Specifically, women at risk for aggressive malignancies are four times more likely to undergo 

screening than women at risk for non-aggressive cancers. By definition, screening is only 

helpful for women at risk for aggressive cancer, whereas it leads to overdiagnosis for women 

at risk for non-aggressive cancer. Under the current degree of private information, most 

vulnerable women are already screened at a relatively low screening coverage. Consequently, 

screening is less effective for marginal women at medium and high screening coverage. We 

estimate that just 23% of women are susceptible to aggressive cancer; thus, if women had 

complete information about their potential cancer type, the system might achieve near 100% 

screening efficacy with only 23% coverage. 

Our findings have implications for the development of breast cancer screening guidelines. 

Primarily, they explain the negative findings of Bleyer and Welch (2012) while allowing for the 

non-negligible benefits of screening for some women. In addition, our model reconciles the null 

effects with the research demonstrating the advantage of screening (for instance, Einav, 

Finkelstein, Oostrom, Ostriker, and Williams (2020) show that lowering the age requirement from 

45 to 40 years old results in significantly increased early diagnosis and lowered mortality). 

Moreover, our findings caution that using the estimates of the marginal effectiveness of screening 

when designing policies applicable to inframarginal women may be misleading. For example, 

ethnic groups with limited coverage may benefit from expanding screening, even if the estimates 

of screening effectiveness in the general population indicate negligible efficacy. This duality 

occurs because the relevant marginal effect of screening may differ between subpopulations due 

to variables limiting access to mammography that are orthogonal to the risk of acquiring late-

stage cancer. For instance, we demonstrate that Singapore’s Malay population has low screening 

coverage and benefits the most from screening expansion. 

 
4 The quoted estimate of recommended coverage assumes the negligible monetary cost of screening and overdiagnosis. 
Using our effectiveness tabulations to obtain optimal coverage for a given degree of the monetary cost of screening 
and overdiagnosis is relatively easy. 
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Obtaining viable estimates of self-selection is challenging. First, screening decisions are often 

endogenous, leading to simultaneity in observed screening coverage and screening effectiveness.   

Second, the data may only identify a local average treatment effect of screening at the observed 

coverage rate. Because screening coverage in many previous studies was moderate or high, most 

marginal women might be non-susceptible to aggressive cancer. In such a case, even if the 

screening decision is exogenous, the data may be insufficient to identify self-selection depending 

on cancer susceptibility. We address these issues by analyzing a unique dataset of all 

Singaporean women aged 40 and older. The Singaporean data indicates age, ethnicity, screening 

events, and cancer progression. Conveniently, due to plausible external socioeconomic and 

religious factors, screening coverage differs significantly between the observed ethnic groups. 

The within-group screening rates also experience a plausible two-year exogenous increase due 

to the government’s massive marketing push. This variation allows us to estimate the causal 

impact of screening on mortality and demonstrate how the marginal benefit varies as the 

screening rate increases from low to moderate and high. 

We postulate a screening and cancer progression model to identify self-selection and obtain 

policy counterfactuals. The model estimates are driven by the outcomes of cancers detected at 

various coverage rates in the data. Consistently with self-selection, cancers detected in years 

with high screening coverage have reduced mortality rates. We also detect lower mortality 

rates amongst stage-one cancers detected early at higher coverage. Decreasing mortality 

amongst early-detected cancers rules out the possibility that higher coverage may be related to 

lower mortality simply because it promotes early detection.  

Recent research reveals self-selection when undergoing preventative screening (Oster, 2020) 

and mammography (Kim and Lee, 2017; Kowalski, 2018; Einav, Finkelstein, Oostrom, Ostriker, 

and Williams, 2020). For instance, Kim and Lee (2017) examine the influence of public sector 

incentives for mammography in Korea. They find that the incentives provided by Korea’s 

National Screening Program increased coverage and cancer detection. Nevertheless, similarly to 

Bleyer and Welch (2012), the program failed to decrease mortality, possibly because the 

individuals who decided not to participate were significantly more susceptible to cancer. 
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Kowalski (2018) examine data from the randomized controlled trial conducted for the 

Canadian National Breast Screening Study (CNBSS) among women 40-49 years of age. They find 

evidence that healthier women screen more often and are more susceptible to overdiagnosis. 

Moreover, their results do not indicate a significant improvement in future breast cancer rates 

(measured 20 years forward) among women who screened when 40-49 years old compared to 

those who did not. 

Complementary work by Einav, Finkelstein, Oostrom, Ostriker, and Williams (2020) 

focuses on the policy decision to begin screening at age 40 or 45. We focus on the marginal 

effectiveness of screening as coverage increases and how this may impact under-screened 

subpopulations. Consistent with our narrative, the authors provide evidence of “positive 

selection” in mammograms. Specifically, women who choose screening without recommen-

dation have a higher incidence of aggressive cancer. In addition, they demonstrate significant 

disadvantages associated with shifting recommendations from age 40 to 45. This result is also 

consistent with our findings because, in our paradigm, lowering the screening age and 

increasing the frequency may be beneficial even if the marginal effect of increasing coverage 

is negligible. For instance, we demonstrate that at 50% coverage, reducing the screening 

interval from every two years to once a year reduces the incidence of late-stage cancer by 

approximately 20 cases per 100,000 women. 

Kowalski (2021) examines the evidence on the effect of mammography on breast-cancer-

caused mortality and all-cause mortality over 20 years using CNBSS data and finds little 

evidence of early-stage screening resulting in a significant reduction in mortality. She argues 

that while it may be challenging to estimate the extent of and the harms caused due to over-

diagnosis, the evidence suggests harms may outweigh the benefits of increased utilization 

(which increases cancer detection) of mammography screening. Notably, several studies in 

the medical literature reported overdiagnosis of breast cancer due to mammography, using 

both observational data Bleyer and Welch (2012) and randomized experiment data (Zack-

risson, Andersson, Janzon, Manjer, and Garne, 2006; Baines, To, and Miller, 2016; van den 

Ende, Oordt-Speets, Vroling, and van Agt, 2017). 
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Researchers also examined the effect of insurance coverage and mammography screening 

utilization. For instance, Finkelstein, Taubman, Wright, Bernstein, Gruber, Newhouse, Allen, 

Baicker, and Group (2012) examined the effect of Medicaid expansion, and Bitler and Carpenter 

(2016) studied the effect of state insurance mandates requiring coverage insurance to find that 

such expanded coverage increased mammography utilization rate. 

 

2 Mammography screening in Singapore 
Breast cancer affects 1 in 11 women in Singapore and causes approximately 400 deaths a year. 

Between 2005 and 2009, breast cancer was a leading cause of cancer-related deaths; thus, 

detecting breast cancers at their early stage is an essential factor in reducing mortality. 

Mammogram screenings are a critical tool facilitating early diagnosis, so screening coverage 

is a widely used statistic that summarizes the level of preventive care. Coverage is typically 

defined as a percentage of women between 40 to 69 years old that underwent mammography 

in the last two years. According to Loy, Molinar, Chow, and Fock (2015), mammography 

coverage in Singapore was approximately 30% in 2001. In comparison, mammography 

coverage in the United States in 2001 was over 70%.5  

To increase mammography coverage, in 2001, the government of Singapore introduced the 

National Breast Cancer Screening Programme, called Breast Screen Singapore (BSS).6  The 

program aims to provide all women aged 40 to 64 with subsidized screening mammography. 

The procedure is performed in specialized clinics across the country. After implementing BSS, 

all women aged 50 to 64 received a personalized invitation to attend mammography. BSS also 

included community outreach to encourage self-examination. Following BSS, the screening 

coverage increased to 39% (Singapore Ministry of Health, 2011), with more than 46% of 

mammograms performed in BSS clinics and the remainder performed at restructured hospitals, 

private hospitals, and private X-ray centers (Loy, Molinar, Chow, and Fock, 2015).  

We obtained a complete set of medical histories between 1993 and 2013 from the Singapore 

Cancer Registry. The data includes all women with detected breast cancer and indicates unique 
 

5 Source: https://www.cdc.gov/nchs/data/hus/2010/086.pdf  
6 Currently BSS is a part of the broader ‘Screen for Life’ program of the Health Promotion Board, 
Ministry of Health, Singapore. 
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patient identifier, age at the initial detection, date of death (if died due to breast cancer), and 

ethnic group.  

Figure 1(A) contains the time trend of breast cancer incidence. Early- and late-stage cancer 

incidence soared between 1993 and 2001, potentially due to an aging population and 

decreasing mortality for non-breast-cancer-related causes. Between 2001 and 2013, we 

observe a further increase in early cancer incidences, partly due to more extensive screening 

coverage. We also observe a somewhat flatter but still increasing trend in late-stage cancer 

incidences. 

--- Insert Figure 1 here --- 

Our data on cancer incidences are supplied with a complete list of screenings done via BSS. 

Figure 1(B) contains the time trend in breast cancer coverage (screened in the last two years) 

computed using the BSS sample. We observed an initial increase in screening coverage in 2003 

and 2005. However, this increase was followed by a slight decrease in coverage from 2007-2013. 

According to our conversations with the program administrators, later years of BSS had less 

intense media campaign efforts. 

According to the Singapore Ministry of Health (2002), in 2001, 52% of women aged 40 to 

69 years were aware of mammography. However, this awareness varies amongst three major 

ethnic groups in Singapore. Specifically, Chinese women had a higher level of awareness 

(54%) compared with Indian women (42%) and Malay women (41%). Figure 1(B) 

disaggregates the BSS screening coverage for Malay and non-Malay populations and shows a 

persistent but somewhat shrinking gap in Malay and non-Malay BSS coverage. In addition, 

Figure 1(C) shows the trend in late-stage cancer incidence between Malay and non-Malay 

populations. Taking this evidence together, we conclude that the Malay population screens at 

a lower rate and experiences a significantly larger incidence of late-stage cancer. 

The reasons for ethnic disparities in cancer survival rates have been long studied in the 

American healthcare system. Li, Malone, and Daling (2003) identify that “blacks, American 

Indians, Hawaiians, Indians and Pakistanis, Mexicans, South and Central Americans, and 

Puerto Ricans had 1.4- to 3.6-fold greater risks of presenting with stage IV breast cancer” 



 

8 
 

relative non-Hispanic whites. Lannin, Mathews, Mitchell, Swanson, Swanson, and Edwards 

(1998) show that the majority of the gap can be attributed to economic factors, such as: having 

low income, never having been married, having no private health insurance, delaying seeing a 

physician because of money, or lacking transportation; and cultural beliefs, such as, “air causes 

cancer to spread,” “the devil can cause a person to get cancer,” or “women who have breast 

surgery are no longer attractive to men.” Smith-Bindman, Miglioretti, Lurie, Abraham, 

Barbash, Strzelczyk, Dignan, Barlow, Beasley, and Kerlikowske (2006) link the ethnic gap in 

the US mortality rate due to breast cancer with differences in access to mammography 

screening. They find that “African-American, Hispanic, Asian, and Native American women 

were more likely than white women to have received inadequate mammographic screening” and 

that “The observed differences in advanced cancer rates between African American and white 

women were attenuated or eliminated after the cohort was stratified by screening history.” 

Similarly, Mitchell, Lannin, Mathews, and Swanson (2002) find that strong religious beliefs 

supporting “religious intervention in place of treatment” may contribute to later cancer detection 

and a higher rate of advanced-stage cancer diagnosis. 

The above regularities identified in the US population parallel Singapore. As mentioned 

before, the indigenous Malayan population faces stark disadvantages in access to mammography 

and exhibits a more significant incidence of late-stage breast cancer than non-Malayans. At the 

same time, Malayans are subject to several socio-economic factors that were shown to lower 

mammography adoption. They have a relatively low university degree percentage, have lower 

household income, and are more driven by religious beliefs (see Table 1). 

The premise of our empirical analysis is to utilize the pre-BSS cross-sectional variation in 

exposure to screening across ethnic groups. BSS increased screening exposure for all ethnic 

groups, enabling us to estimate the marginal benefit of extra screening for various levels of initial 

coverage. The following section presents descriptive evidence that the benefits of extra screening 

are decreasing as coverage increases. 

--- Insert Table 1 here ---- 
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3 Descriptive analysis 
We focused on women who were at least 40 years of age. It is helpful to use the following stylized 

model of breast cancer incidence. Suppose that breast cancers vary by their progression rates. Some 

cancers are non-aggressive; they do not progress to the late stage or progress slowly. Some cancers 

are aggressive and progress to the late stage faster. The population is assumed to consist of three 

types of individuals, NC (no cancer), NA (non-aggressive cancer), and AC (aggressive cancer), 

with varying susceptibilities to develop non-aggressive and aggressive cancer. NC individuals do 

not contract cancer. NA individuals are susceptible to contracting non-aggressive cancer but are not 

susceptible to contracting aggressive cancer. Lastly, AC individuals are susceptible to contracting 

aggressive cancer. All individuals detected with late-stage cancer are of the AC type. However, 

individuals detected with early-stage cancer can be either AC or NA. According to some hazard 

rates, NA individuals may become AC individuals as they age. In other words, initially, non-

aggressive cancer may become aggressive. Importantly, if cancer is detected early, mammography 

provides little information about the aggressiveness of cancer. Therefore, early detection of NA-

type cancer may lead to overdiagnosis.  

 

--- Insert Figure 2 here ---- 

Our primary empirical evidence relies on the characteristics of women that undergo 

screening as screening coverage varies (across subpopulations and over time). We define cancer 

susceptibility as the proportion of AC-type women. The critical factor in deciding optimal 

screening coverage is the susceptibility of the marginal woman (i.e., the marginal benefit of 

screening) at various coverage levels. If the marginal susceptibility is high, increasing screening 

may be beneficial. If the marginal susceptibility is low, increasing screening may not be 

beneficial and may lead to overdiagnosis. Figure 2 depicts two relevant cases: constant and 

decreasing marginal susceptibility. If all types of individuals are equally likely, or if screening 

is randomly allocated, the relative composition of screened types will remain constant as the 

screening rate increases. Panels (A) and (B) describe the case of constant susceptibility with low 

and high screening coverage, respectively. A flat solid line describes how marginal susceptibility 

varies with current screening coverage. The dotted line depicts the average susceptibility of women 

that screen for a given coverage given by a gray rectangle. Since marginal susceptibility is 
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constant, the average susceptibility does not change as the gray screening coverage area expands. 

In other words, the composition of screened individuals is identical to the proportions of types in 

the population regardless of the screening rate. Similarly, the proportion of unscreened aggressive 

and non-aggressive cancers will be constant. 

However, if AC individuals are more likely to undergo screenings than NA and NC individuals, 

the composition of screened individuals will vary as the screening rate increases. When the 

screening rate is low, the proportion of AC individuals among screened patients may be higher 

than the population proportion. Finally, as the screening rate approaches 100%, the proportion of 

AC individuals among screened patients may decline and reach the population proportion. As a 

result, mammography screenings will have diminishing returns in detecting AC individuals. 

Panels (C) and (D) of Figure 2 describe the case of decreasing marginal susceptibility at low 

and high screening coverage, respectively. In contrast to Panels (A) and (B), the average 

susceptibility of screened women, depicted by the dotted line, decreases as screening coverage 

increases. A natural empirical test for decreasing returns could be measuring the proportion of AC 

type amongst the screened women as the screening coverage changes. Unfortunately, cancer type 

is not directly observed in the data. Instead, we utilize various measures of cancer progression to 

proxy for the cancer type. 

--- Insert Figure 3 here --- 

Figure 3 (Panel A) shows an inverse relationship between the proportion of late-stage cancer 

among cancers detected and the screening rate from 2003-2013. Specifically, the proportion of 

late-stage cancer detected declines as the screening rate increases. Figure 3 (Panel B) plots the 

five-year mortality rates among individuals detected with cancer in a particular year and the 

corresponding annual screening rates from 2003-2009. Again, we see an inverse relationship: 

average breast cancer mortality amongst screened women decreases as the screening coverage 

increases. There are two possible explanations for this fact. First, if treatment effectiveness does 

not depend on coverage and all types of individuals are equally likely to undergo screenings, we 

should observe a horizontal line. The decreasing line supports self-selection consistent with Panels 
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(C) and (D) of Figure 2. Second, more extensive coverage may lead to a higher percentage of 

early cancer detections and, thus, more effective treatment and lower mortality.  

To account for the latter mechanism and isolate diminishing returns, we restrict our attention 

to cancers detected early, resulting in similar treatment effectiveness. Figure 3 (Panel C) shows 

that the mortality rate following early-stage cancer detection decreases as screening coverage 

increases. If AC and NA individuals were equally likely to undergo screening, the proportion of 

aggressive cancers amongst those early detected should not depend on coverage. On the contrary, 

we find higher mortality when the coverage is low, indicating that a high proportion of early-

detected cancers prove aggressive. As coverage increases, a decrease in mortality indicates that 

the proportion of aggressive cancers decreases. Our results imply that AC individuals have a higher 

screening propensity than NA individuals. Since screening is the most beneficial for aggressive 

cancers detected early, a decreasing proportion of these cases suggests that the coverage has 

diminishing returns.  

Importantly, analysis using Panel C allows for the possibility that early detection changes the 

course of the disease if the inherent efficacy of treatment of early-detected aggressive cancers does 

not depend on contemporary screening coverage. In our setting, this possibility is unlikely since 

the screening coverage does not exhibit a systematic time trend (see Figure 1). 

In the next section, we present a stylized model of cancer progression and screening that we 

use to identify the percentage of women susceptible to aggressive cancer and screening selection 

function. 

 

 

4 Model 
The country is composed of 𝑁	individuals indexed by 𝑛. Time is indexed by 𝑡 and is divided into 

monthly intervals. Time 𝑡 = 0 denotes the first month after turning 40. An individual 𝑛 can have 

one of the three cancer states at time 𝑡, denoted by 𝑐!" ∈ {𝑆#, 𝑆$, 𝑆%}, where 𝑆#, 𝑆$ and 𝑆% denote 

“no breast cancer,” “early-stage breast cancer” and “late-stage breast cancer,” respectively. Every 

individual is assumed to have no breast cancer at 𝑡 = 0; 	𝑡ℎ𝑎𝑡 is, 𝑐!# = 𝑆#. 
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Everyone is born with one of the three latent types 𝛼1! ∈ {NC, NA, AC}, with probabilities 

𝑝&' , 𝑝&( and 𝑝('  (which sum to 1). NC (no cancer) individuals never develop breast cancer; NA 

(non-aggressive cancer) individuals can contract early-stage but not late-stage cancer; and AC 

(aggressive cancer) individuals can contract early-stage cancer that can progress to the late stage. 

In each period, NA individuals may become AC individuals with probability 𝜅. Thus, individuals 

not susceptible to late-stage cancer may become susceptible at an older age. This also implies that 

non-aggressive tumors may become aggressive. We denote the type of the individual at 𝑡 as 𝛼!" . 

Note that 𝛼!# = 𝛼1!. 

Cancer stages and individual types follow a Markov chain. Individual 𝑛 may obtain early-stage 

breast cancer with probability 𝑃(𝑐!")$ = 𝑆$|𝑐!" = 𝑆#, 𝛼!" ). We assume that an individual must 

contract early-stage cancer before progressing to late-stage cancer, so 

𝑃(𝑐!")$ = 𝑆%|𝑐!" = 𝑆#, 𝛼!" ) = 0	, ∀𝛼!" .    (1)  

As mentioned before, an NC individual will not contract breast cancer so  

𝑃(𝑐!")$ = 𝑆$|𝑐!" = 𝑆#, 𝛼!" = NC) = 0.    (2) 

Also, an NA individual does not contract late-stage cancer, so 

𝑃(𝑐!")$ = 𝑆%|𝑐!" = 𝑆#, 𝛼!" = NA) = 0.    (3) 

Additionally, we assume that 

𝑃(𝑐!")$ = 𝑆$|𝑐!" = 𝑆#, 𝛼!" = NA) = 𝑃(𝑐!")$ = 𝑆$|𝑐!" = 𝑆#, 𝛼!" = AC) = 𝜆#$ (4)  

and denote   

𝑃(𝑐!")$ = 𝑆%|𝑐!" = 𝑆$, 𝛼!" = AC) = 𝜆$%.    (5) 

 

As a result, the cancer transition process is fully characterized by two numbers 𝜆#$and	𝜆$%. 

The 𝜆$% specifies the distribution of, so-called adjourn time – the time cancer spends between pre-

clinical and clinical stages. Adjourn time is distributed as a geometric random variable with the 

mean	 $
*!"

. We allow 	𝜆$% (and thus sojourn time) to differ by age. We estimate two parameters 𝜆$%+  

for younger individuals and 𝜆$%,  for older individuals. Average sojourn time is given as 𝐸[𝜏 −
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𝑡|𝑐!" = 𝑆$], where the stage transition stopping time 𝜏 = min	{𝑡: 𝑐!" = 𝑆%}. Note that the average 

sojourn time can be decomposed into sojourn time for AC and NC individuals at time 𝑡, 

𝐸[𝜏 − 𝑡|𝑐!" = 𝑆$]

= 𝐸[𝜏 − 𝑡|𝑐!" = 𝑆$, 𝛼!" = 𝐴𝐶]. 𝑃(𝛼!" = 𝐴𝐶)

+ 𝐸[𝜏 − 𝑡|𝑐!" = 𝑆$, 𝛼!" = 𝑁𝐴]. 𝑃(𝛼!" = 𝑁𝐴). 

            (6) 

Since NA individuals must become AC to transition to the late stage, we know that AC sojourn 

times are shorter: 

𝐸[𝜏 − 𝑡|𝑐!" = 𝑆$, 𝛼!" = 𝐴𝐶] ≤ 𝐸[𝜏 − 𝑡|𝑐!" = 𝑆$, 𝛼!" = 𝑁𝐴]. (7) 

 

Also, 𝐸[𝜏 − 𝑡|𝑐!" = 𝑆$, 𝛼!" = 𝑁𝐴] > 0 if 𝜅 > 0. 

Breast cancer is detected through screenings which are assumed to reveal 𝑐!"  to the doctor and 

the individual. The decision to get screened is endogenous and depends on the type 𝛼!" , latent 

cancer stage 𝑐!"  and the ethnic origin of the individual 𝑒!. We assume that each period type 

transition occurs first, followed by the cancer stage transition and the decision to get screened. 

This way, individuals incorporate the most current type and cancer stage when deciding to get 

screened. In addition, we incorporate two ethnicities, M and NM, which denote Malayans and non-

Malayans, respectively. As mentioned earlier, Malayans screen less than non-Malayans. 

Let 𝑑!" = 1 if an individual gets screened at time 𝑡, and 𝑑!" = 0 otherwise. Denote the 

screening probability of an individual of type 𝛼, cancer stage 𝑐, and ethnic origin 𝑒, as 

𝛿-.(𝑒) = 𝑃(𝑑 = 1|𝑐, 𝛼, 𝑒).     (8) 

 

We impose a set of functional form restrictions on the screening probability 𝛿-.(𝑒). We allow 

type, cancer stage and ethnic origin to affect the probability of screening multiplicatively. We 

also allow screening to depend on a calendar year to capture the effects of marketing programs 

on the screening rate. Formally, 

𝑃+/01(𝑑!" = 1|𝑐!" , 𝛼!" , 𝑒!) = 𝛾$(𝑐!" ) × 𝛾%(𝛼!" ) × 𝛾2(𝑒!) × 𝛾3(𝑌𝑒𝑎𝑟).  (9)  
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We assume that everything else being equal, the screening probability with early-stage cancer 

is at least as high as the screening probability with no cancer, i.e., 𝛾$(𝑐!" = 𝑆$) ≥ 𝛾$(𝑐!" = 𝑆#). We 

also assume that late-stage cancer is screened and detected instantaneously so that 

𝑃+/01(𝑑!" = 1|𝑐!" = 𝑆%, 𝛼!" , 𝑒!) = 1.    (10) 

 

Next, we allow for self-selection to get screened and hence different screening propensities 

based on type 𝛼!" . Without a loss of generality, we normalize 𝛾%(𝛼!" = NC) to equal 1. We also 

allow 𝛾%(𝛼!" = NA) and 𝛾%(𝛼!" = AC) to be different from 1 and each other. We conjecture that 

an individual at risk may get screened more, that is: 

𝛾%(𝛼!" = AC) ≥ 𝛾%(𝛼!" = NA) ≥ 1.    (11) 

 

We do not make the above assumption in the estimation. Instead, we let the data reveal the 

above ranking.  

Without loss of generality, we normalize 𝛾2(𝑒! = 𝑁𝑀) to equal 1. We allow the screening rate 

among Malays to be different from that among non-Malays, that is, 𝛾2(𝑒! = 𝑀), which is different 

(possibly smaller) than 1. Finally, we allow for a constant multiplicative trend in screenings, the 

surge in screenings in 2004 and 2006, and the slump in 2009. Formally,   

 γ3(𝑌𝑒𝑎𝑟) = 𝜏$+/014$552 × W

	𝜏% 	if	𝑌𝑒𝑎𝑟 = 2004
	𝜏2 	if	𝑌𝑒𝑎𝑟 = 2006
	𝜏3 	if	𝑌𝑒𝑎𝑟 = 2009
1 otherwise.

   (12) 

 

There can be three outcomes from a screening: no cancer detected, early-stage cancer detected, 

late-stage cancer detected. If no cancer is detected, nothing changes, and the individual is returned 

to the screening pool. Such an individual can decide to get screened again at a later period and her 

cancer stage 𝑐!"  and type 𝛼!"  may change in the future. If cancer is detected, an individual is 

assigned to a treatment regime for the rest of her life. We do not explicitly model cancer 

progression in the treatment regime. Instead, we impose a hazard rate of death due to cancer if the 
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individual is of type AC. This rate is 𝜌$if the stage of cancer is 𝑆$, or 𝜌% if the stage of cancer is 𝑆% 

at the point of detection. We do not need to specify the hazard rate for individuals of type NC 

because they never test positive in a mammogram. The hazard rate for individuals of type NA is 

zero. However, even NA individuals (but not NC individuals) can eventually die of breast cancer 

because type NA individuals may progress to type AC. In this case, regardless of being in the 

treatment regime or not, former NA individuals would continue as AC individuals. For individuals 

not in the treatment regime, this would mean an increase in the hazard rate of contracting late-

stage cancer from zero to 𝜆$%. Similarly, this would mean an increase in the death hazard rate 

changes from zero to zero to 𝜌-, where 𝑐 was the cancer stage at the initial detection for the 

individuals in the treatment regime. 

The model is estimated using a maximum likelihood estimator. The parameters to be 

estimated are:    

𝜃 = (𝜅, 𝜆#$, 𝜆#%+ , 𝜆#%, , 𝛾$, 𝛾%, 𝛾2, 𝜏$, 𝜏%, 𝜏2, 𝜏3, 𝜌$, 𝜌%, 𝑝&(, 𝑝&' , 𝑝(').  (13) 

The estimation corrects that some people drop out from the sample because they pass away for 

reasons unrelated to breast cancer using death hazard rates from the census. We consider that one 

of the reasons why someone does not screen or die of breast cancer is that she could already be 

dead for reasons unrelated to breast cancer.  

For everyone, we observe screening except for two cases: (i) if the screening happened before 

2002 and was negative, (ii) if the screening happened outside BSS and was negative. Both issues 

are addressed in the estimation, and the details are contained at the end of the next section. 

Figure 4 illustrates the transition probabilities for types of NC, NA, and AC. The probability of 

getting screened is denoted as 𝛿 and the probability of contracting cancer is denoted by 𝜆. The left 

panel shows that NC individuals have a positive probability of getting screened, but zero 

probability of progressing to early-stage cancer. The middle panel shows that NA individuals can 

progress to early-stage cancer, but they never progress to late-stage cancer or die of cancer. 

Incidences of NA testing positive are the crucial component in our definition of overdiagnosis. 

Lastly, the right panel shows that AC individuals have a positive probability of transitioning from 

early-stage to late-stage cancer. Suppose an AC individual develops cancer, depending on the 

stage, the screening may either result in early-stage detection (followed by a death hazard 𝜌$), or 

late-stage detection (followed by a death hazard 𝜌%). 
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--- Insert Figure 4 here --- 

 

5 Estimation details 
In this section, we explain the estimation procedure. Beyond time-invariant ethnicity, each 

individual is characterized by a state 𝜔!" = (𝛼!" , 𝑑!" , 𝑐!" , 𝑚!
" , 𝑒!), where 𝑚!

"  is equal to 1 if the 

individual died due to breast cancer, and 0 otherwise. The state is not fully observed in each period, 

and we denote the observable part of the state (an observation) for individual 𝑛 at time 𝑡 as 𝑥!" . For 

each 𝑛 and 𝑡, we observe the screening decision 𝑑!" , cancer mortality 𝑚!
"  and ethnicity 𝑒!. 

However, we do not observe cancer stage	𝑐!" = {𝑆#, 𝑆$, 𝑆%} unless the individual gets screened, that 

is if 𝑑!" = 1. We also do not directly observe type 𝛼!" . We only know that an individual is AC if 

late-stage cancer is detected, and that individual is either AC or NA if early-stage cancer is detected. 

The individual can be of any type if no cancer is detected. 

For every parameter vector 𝜃, and under the initial conditions 

𝜔!# = (𝛼!# = 𝛼1!, 𝑑!# = 0, 𝑐!# = 𝑆#, 𝑚!
# = 0, 𝑒! = 𝑒), 

the model implies a Markov process over 𝜔!"  for every 𝑡 = 1,… , 𝑇!. The kernel of that process is 

given by 𝑃(𝜔!" |𝜔!"4$, 𝜃). The log-likelihood function of the data 𝑥!$ , … , 𝑥!
6# is given by: 

k logk 𝑃(𝛼1!)𝑃n𝑥!
6# , … , 𝑥!$o𝜔!#, 𝜃p.

.7#!
 

 

This joint probability can be computed recursively using the fact that the latent process 𝜔!" is 

Markov. The procedure is standard when estimating hidden Markov processes and is briefly 

described here for completeness. 

 

First, denote all states 𝜔!"  that are consistent with observing 𝑥!"  as Ω(𝑥!" ). The likelihood 

computation is explained in two steps. First, we obtain distributions of latent states 𝜔!"  for each 𝑡, 

conditional on past and current observed information 𝑥!" , 𝑥!"4$, … , 𝑥!$ using the recursive equations 
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𝑃(𝜔!" |𝑥!" , … , 𝑥!$ , 𝜔!#, 𝜃) 																																																																																																													

= 	r	
𝑃(𝜔!" |𝑥!"4$, … , 𝑥!$ , 𝜔!#, 𝜃)

𝑃(𝜔!" ∈ Ω(𝑥!" )|𝑥!"4$, … , 𝑥!$ , 𝜔!#, 𝜃)
						if	𝜔!" ∈ Ω(𝑥!" )

0 otherwise
			 

and 

𝑃(𝜔!")$|𝑥!" , … , 𝑥!$ , 𝜔!#, 𝜃) =k 𝑃(𝜔!")$|𝜔!" )𝑃(𝜔!" |𝑥!" , … , 𝑥!$ , 𝜔!#, 𝜃)
8#$%!

. 

Next, we obtain a relevant conditional likelihood 

𝑃(𝑥!" |𝑥!"4$, … , 𝑥!$ , 𝜔!#, 𝜃) = 	k 𝑃(𝜔!" |𝑥!"4$, … , 𝑥!$ , 𝜔!#, 𝜃)
8#$ ∈:(<#$ )

 

which yields a joint likelihood 

𝑃n𝑥!
6# , … , 𝑥!$o𝜔!#, 𝜃p = 	𝑃n𝑥!

6#o𝑥!
6#4$, … , 𝑥!$ , 𝜔!#, 𝜃p × 

⋮ 

𝑃(𝑥!" |𝑥!"4$, … , 𝑥!$ , 𝜔!#, 𝜃) × 

⋮ 

𝑃(𝑥!$|𝜔!#, 𝜃) 

 

There are a few other details of the estimation procedure that are omitted from the above 

presentation. First, for some observations the type of cancer is unobserved, that is, the cancer stage 

is marked as unknown. We assume that the event of an undetermined screening is random and 

exogenous, the likelihood of detecting an unknown stage is a joint likelihood of early and late-

stage cancer. We use 𝜌> as the hazard death rate due to breast cancer after an undetermined 

screening is observed.  

Second, the above description omits the Markov chain’s three-dimensional sub-state with 

exogenous transitions: calendar year, current age, and a 0-1 variable indicating death from reasons 

unrelated to breast cancer. The calendar year is used to obtain screening probabilities which depend 

on the current year. The current age is used in conjunction with age-dependent death hazard rates 

(from the Singapore census) to obtain the probability that the patient may be dead for reasons 
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unrelated to breast cancer for each 𝑡. When computing this probability, we also account for the 

fact that observed screenings must mean that the person is still alive. If the person is dead for 

reasons other than breast cancer, the patient would not get screened or die of breast cancer; thus, 

the likelihood of such events is appropriately adjusted.  

Third, we do not observe negative screening events with probability 𝜙, because some 

screenings are administered outside of BSS. Formally, the event of a negative screening in the data 

arrives with probability 𝜙𝛿#. instead of 𝛿#., where 𝜙 ≤ 1. We account for this in the estimation, 

by calibrating 𝜙 to 40%, which was obtained from a survey administered by BSS. Consequently, 

we replace 𝛿#. with 0.4	𝛿#. when computing the likelihood of negative screening. Importantly, we 

observe all positive screenings; thus, 𝛿$. and 𝛿%. do not need to be deflated. We also do not observe 

negative screenings before 2002, and consequently, we set 𝜙 = 0 for 𝑡 before the year 2002. 

 

6 Results 
In this section, we present the result of the model, discuss its goodness of fit, and conduct 

counterfactuals. 

6.1 Model estimates 

We fit the model described in the previous section to match individual medical records. Such 

procedure fits stylized facts from Figure 3 to deliver the estimates of the proportion of types in the 

population and the degree of self-selection to screen conditional on the underlying type.  

Our analysis yields two major findings. The first major finding is confirmation that the 

empirical proportion of three types of individuals in the population is non-trivial.7 Our estimates 

indicate that the overall proportions of types are 54% (NC), 23% (NA), and 22% (AC). Each year, 

the probability of an NA type becoming an AC type is about 1%. Thus, there are more individuals 

susceptible to aggressive cancer among older women. Among the 40-year-old women, there are 

27% and 19% of NA and AC types. The proportion of AC types grows to 22% for 50-year-olds 

and 24% for 60-year-olds. Even though fewer young women are susceptible to developing late-

stage cancer, our analysis confirms earlier findings that the cancers of susceptible younger women 

 
7 We estimate that 45% of women have a positive likelihood of developing breast cancer at some point in their lives; 
however, we also estimate that 10% to 12% of women actually develop breast cancer over the course of their lives. 
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have shorter sojourn times (similar findings reported by Tabar, Fagerberg, Chen, Duffy, Smart, 

Gad, and Smith, 1995). The likelihood of stage-1 cancer growing to stage-3 within a year is 92% 

for AC women aged 40-45 and 76% for AC women aged 46+. These hazard rates imply average 

population sojourn times of 1.6, 2.1. 1.9 years for stage 1 cancers (1.1, 1.3, and 1.3 for AC 

individuals) for 40, 50, and 60-year-old women. The sojourn times initially increase because the 

likelihood of cancer growth among AC women decreases with age (𝜆$%+  vs. 𝜆$%, ). However, later 

in life, sojourn times decrease because of the higher likelihood of being AC type.8 

The second major finding is that the screening rate differs significantly among the three types. 

In other words, individuals self-select into a screening regime based on their own type. Results 

indicate that every two years, AC individuals are 34 times more likely, and NA individuals are 8 

times more likely than NC to undergo screening (NC:NA:AC is 1:8:34). This implies that AC 

individuals are approximately 4 times more likely to undergo screening than NA individuals. 

--- Insert Table 2 here ---- 

 

6.2 Model fit 

We validate our model by comparing the predicted number of cancer incidences vis-a-vis the actual 

number for several cohorts of women. We have cancer incidence data from 1993 but screening 

data only from 2002. Thus, we restrict our goodness-of-fit analysis to individuals who were at 

most 40-49 years old in 2002. We fit the predicted cancer incidence rates by stage to the ten cohorts 

of patients within this age group. We find that the predicted numbers of late-stage cancer fit the 

actual number very well for all but one outlier cohort. As for early-stage incidences, the quality of 

fit varies. The model underpredicts for the first five cohorts by about 20%. However, predictions 

for the subsequent four cohorts are well within ±/-10% of actual incidences. The fit of our model 

by cohort is presented in Figure 5. 

--- Insert Figure 5 here ---- 

 

 

 
8 In the Appendix B, we consider alternative assumptions regarding the relationship between age and hazard rates 
𝜆&'.  
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6.3  Counterfactuals 

Heterogeneity in the rate of cancer progression and the propensity to screen results in the varying 

composition of screened types as the screening rate increases. Our estimates imply that at a 100% 

screening rate, the composition of the types is 54% (NC), 23% (NA), and 22% (AC). Compositions 

of screened types for intermediate coverages are obtained using counterfactual experiments 

produced by our model. These experiments aim to isolate the impact of increasing coverage on the 

efficacy of screening and the degree of overdiagnosis. 

The screening policies are obtained in the following way. The relevant population is all 

Singapore women of more than 40 years of age in 2002. This population is tracked starting at 40 

and is initially subdivided into latent subpopulations NC, NA, and AC according to the estimated 

initial proportion of types. To obtain the set of women screening for a given x% coverage rate, we 

draw x% of women without replacement maintaining a 1:8:32 ratio of the propensity to screen 

across types. Drawn women are flagged as “covered.” The remaining women are flagged as “not 

covered.” Covered women screen once every two years, while not covered women never screen. 

Given such screening policies for different coverage rates, we simulate the progression of types, 

cancer progression, and detection.9  

--- Insert Figure 6 here --- 

--- Insert Table 3 here --- 

Figure 6 presents the composition of types at various screening coverages. Due to self-

selection, at low screening rates, a large proportion of screened individuals are AC. However, as 

the screening rate increases, more NA and NC individuals decide to undergo screenings. For 

example, at a 25% screening rate, the ratio of types (NC:NA:AC) is 9:27:64; at a 50% screening 

rate, the ratio is 19:37:44; and at a 75% screening rate, the ratio is 39:31:30. 

To measure the degree of overdiagnosis, we estimate the number of cancer incidences by the 

types of individuals. In Table 3, columns 2-4, we report the estimated detection rates of early-stage 

cancer, decomposed into non-aggressive (NA) and aggressive cancers (AC) and late-stage cancers 

 
9 Since the coverage status is determined for each woman at the age of 40, it remains to specify what happens to 
coverage when the type of women changes. In the baseline specification, we redraw the coverage status for all women 
that change types using updated propensity to the screen. We also consider two boundary conditions: keeping coverage 
status constant regardless of changing the type, or marking the individual as “covered” after every type change. As 
presented in the Appendix A, our results are robust to this assumption.  
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(AC) for various screening rates. Out of 100,000 individuals, a 25% screening rate will detect 56 

incidences of early-stage cancer, 26 of which are in AC individuals; a 50% screening rate will 

detect 110 incidences, 32 of which are in AC individuals; and a 75% screening rate will detect 128 

incidences, 31 of which are in AC individuals. Therefore, when the screening rate exceeds 50%, 

there is an insignificant increase in the detection rate of early-stage cancer in AC individuals.10 

We define overdiagnosis at a given screening rate as the ratio of non-aggressive cancers to the 

total incidence rate of cancer (both early and late-stage). Therefore, the degree of overdiagnosis 

can be estimated using the predicted cancer incidences by stage and type. As a result of self-

selection, the proportion of screened NA individuals increases as the screening rate increases. 

Consequently, the degree of overdiagnosis increases as the screening rate increases. In the last 

column of Table 3, we report the estimated degrees of overdiagnosis by screening rate. We see 

that even at low screening rates, there is some overdiagnosis. For instance, at a 5% screening rate, 

110 cases are detected per 100,000 women, among which 4.5 cases are NA. In other words, 4.5 

cases are overdiagnosed. As the screening rate increases to 25%, the degree of overdiagnosis 

increases to 21%. At a 50% screening rate, overdiagnosis increases to 43%. And, at a 75% 

screening rate, the degree of overdiagnosis increases even more to 50%. 

Mammography screening will only help AC individuals, who account for 22% of the 

population. With a perfect targeting technology, a 22% screening rate could screen all AC 

individuals. On average, with current targeting technology, increasing the screening rate from 50% 

to 55% (extra 2,000 individuals screened) decreases late-stage occurrences by merely 0.7 cases 

per 100,000 women. The decrease is computationally negligible beyond 70% coverage. 

Increasing screening coverage is more beneficial for older individuals. In columns 6-8, we 

present the number of late-stage cancer occurrences as a function of coverage for different age 

groups. Increasing the screening rate from 50% to 55% has a negligible impact (0.3 fewer cases 

per 100,000) on late-stage cancer occurrences for individuals between 40 and 49 years old. This 

change in screening coverage results in 1 fewer and 1.1 fewer late-stage cases for individuals 50-

59 and 60-69 years old. Thus, increasing the screening rate beyond 50% is nearly three times more 

 
10 The individuals' type may change over time, and we report the type at the initial cancer detection. Consequently, 
the overall number of AC types recorded at the initial detection would decrease as coverage increases because more 
NA individuals are detected with early cancer before they progress to AC type. This decrease is also the reason why 
the number of AC early-stage detections decreases beyond 45% coverage. 
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effective for older individuals. At the same time, increasing screening rates beyond 75% have 

negligible benefits regardless of age. The last row of the table presents a simulation that evaluates 

an increase in screening frequency. At 50% coverage, moving from screening every two years to 

once a year has measurable benefits of decreasing late-stage cancer incidence by approximately 

20 cases. The change is present for every age group. 

In the estimation, we set the same distribution of initial types across ethnic groups. However, 

our identification of the self-selection parameters does not depend on this assumption. Instead, 

identification may be obtained using a diff-in-diffs variation in screening propensities within each 

type (detailed in Section 3). In Appendix C, we investigate the robustness of our results to 

heterogenous type distribution across ethnic groups. We re-estimate the model and re-simulate our 

counterfactuals allowing the Malayan population to have different baseline susceptibility to 

aggressive cancer. Our estimates imply that screening is slightly more effective if we assume that 

the Malayan population is significantly more susceptible to aggressive cancer. Nevertheless, even 

if heterogeneity across types is assumed to be extensive (+10pp higher susceptibility of the Malay 

population), our analysis confirms diminishing returns and muted impact of screening when 

increasing the coverage beyond 50% of the population. 

 

7 Conclusion 
Individuals have varying susceptibilities to developing aggressive breast cancer. Early screenings 

are critical for those more susceptible, but screenings may not be as beneficial for those with low 

or no susceptibility. In this paper, we propose a simple model to estimate the probabilities of 

individuals with various levels of susceptibility to aggressive cancer. We use a detailed data set 

from the Singapore Cancer Registry and the Health Promotion Board of Singapore. In addition, 

we exploit the variation in screening tendencies across various ethnic groups and temporal spikes 

in screening rates across years due to a government screening program. 

Our data show that individuals with greater susceptibility are more likely to screen early. 

Therefore, as the population screening rate increases, the composition of individuals being 

screened and the effectiveness of screening change. We find that increasing the screening rate up 

to 50% is effective, while increasing the screening rate beyond 50% is, on average, ineffective in 

preventing late-stage cancer incidences and results in overdiagnosis. While we can detect small 
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but measurable benefits of increasing screening rates beyond 50% only for individuals beyond 60 

years of age, increasing screening coverage beyond 75% has no measurable benefits regardless of 

age. Conversely, increasing screening frequency from every two years to yearly has measurable 

benefits regardless of age. Finally, with perfect targeting technology, only 22% of women must 

undergo screenings. Until such technology is available, a screening rate of up to 50% will likely 

save lives. 

These results have policy implications. American screening rate reached above 70%. At this 

coverage in 2008 alone, Bleyer and Welch (2012) estimated the degree of overdiagnosis to be 

around 70,000. Such findings questioned the widespread promotion of mammography screenings 

for breast cancer prevention. Nonetheless, empirical evidence of overdiagnosis and related harm 

has not been strong enough to reject mammography as a routine screening strategy outright. 

Therefore, a recent IARC (International Agency on Research on Cancer) committee concluded 

that regular screening mammography should still be recommended for women 50-69 (Lauby-

Secretan, Scoccianti, Loomis, Benbrahim-Talla, Bouvard, Bianchini, and Straif, 2015).  

Our results caution against applying marginal screening effectiveness obtained at high 

coverage to cases with moderate or low coverage. In countries with high screening rates, 

overdiagnosis is undoubtedly a significant concern. However, not all countries have such high 

rates. For instance, the screening rate in Singapore was estimated to be just below 25% in 2010. 

At this rate, overdiagnosis is only modest; thus, efforts by the Health Promotion Board of 

Singapore to promote regular mammography screening through their Breast Screen Singapore 

program were effective in reducing mortality. The same reasoning holds when designing 

mammography promotion across segments with varying coverage. If the coverage varies for 

reasons plausibly orthogonal to genetic cancer susceptibility (such as income or possibly 

ethnicity), increasing coverage for underserved populations will prevent cancer deaths, even if the 

overall population coverage is high. 
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Appendix 

A Changing coverage status  

Depending on her initial type, the screening coverage status is determined for each woman at 40 

years of age. However, it remains to specify what happens to the coverage status when the type 

of women changes. In the baseline specification, we redraw the coverage status for all women 

that change types using updated screening propensity. We also consider two alternative 

assumptions. In alternative scenario 1, we keep the coverage status constant regardless of the 

changing type. Because the type may only change from NA to AC, which could increase 

screening propensity, this scenario constitutes a lower bound on screening effectiveness. We also 

consider scenario 2, in which we always mark the individual as covered after changing the type. 

Scenario 2 constitutes an upper bound on screening effectiveness. The results of these alternative 

simulations are presented in Table 4. The alternative specifications deliver quantitatively similar 

results to the baseline specification. Thus, we conclude that our results are robust. 

--- Insert Table 4 here --- 

 

B Age-dependent cancer progression hazard rates 

In the model, we allow the early-state to late-stage cancer hazard rates to depend on the woman's 

age. This dependence allows our model to generate inverse U-shaped cancer sojourn types as a 

function of age previously identified in the literature. We estimate two numbers 𝜆$%+ 	for younger 

individuals and 𝜆$%,  for older individuals. The baseline specification allows for the change in the 

hazard rate as the woman reaches 45 years old. In this Appendix, we investigate alternative 
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assumptions. Table 5 contains simulations using a re-estimated model assuming homogeneous 

hazard rates and age breaks at 43 and 47 instead of 45. The results are nearly identical. 

--- Insert Table 5 here ---- 

 

C Heterogeneous susceptibility propensities 

In the baseline model we calibrate the baseline type propensities at birth to be equal across ethnic 

groups. We investigate the robustness of our findings to this assumption by calibrating the model 

using heterogeneous type propensities; that is, we set  

P(AC|Malay) = P(AC|Non–Malay) + 𝑋  P(NA|Malay) = P(NA|Non–Malay) − 𝑋.  

Subsequently, we recompute the simulated composition of screened types and the probability 

of overdiagnosis. The results are shown in Table 6. In all cases, including extreme heterogeneity 

in baseline rates, we find that AC individuals are significantly more likely to screen than NC and 

NA individuals. This self-selection results in an increasing rate of overdiagnosis as screening 

coverage increases. We estimate that at 25%, coverage overdiagnosis ranges from 18% to 28%. 

At 50% coverage, the overdiagnosis ranges from 30% to 56%. Regardless of the assumed 

heterogeneity in the composition of types across ethnicities, we find that increasing screening 

coverage up to 50% is effective in preventing late-stage cancer. We also confirm that increasing 

screening coverage beyond 50% is less effective on average but may be somewhat effective for 

older individuals. 

--- Insert Table 6 here ---- 
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Figure 1: (A) Trends in aggregated cancer detection by stage. (B) Trends in aggregated screening rates for 
Malays and non-Malays. (C) Trends in late-stage cancer incidence for Malays and non-Malays. 
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Figure 2: Composition of screened types 
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Figure 3: (A) Screening rate and proportions of late-stage cancer. (B) Screening rate and five-year 
mortality following cancer detection. (C) Screening rate and five-year mortality following early 
(stage 1 and unknown stage) cancer detection. The gray area represents a 95% confidence interval. 
The downward sloping upper bound signifies a statically significant negative relationship with p-
value of less than 0.05. 
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Figure 4: Transition probabilities of cancer stages for NC, NA, and AC individuals. 

 

 
Fig. 5. Fit of the model by cohort. 
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Fig 6: Composition of screened types 

 

 

  Total Chinese Malay
s 

Indian
s 

Others 
Ethnic Composition (%) 100.0 74.1 13.4 9.2 3.3 
Age: Below 15 Years (%) 17.4 15.7 22.4 21.5 22.8 
15 - 64 Years (%) 73.7 74.2 71.5 72.8 73.7 
65 Years & Over (%) 9.0 10.1 6.1 5.7 3.5 
Average Monthly Household Income ($) 7,214 7,326 4,575 7,664 11,518 
Education: Below Secondary (%) 32.4 33.8 37.0 22.5 10.8 
Secondary (%) 18.9 18.2 27.1 17.2 9.9 
Post-Secondary (%) 11.1 9.9 19.2 11.2 7.6 
Diploma (%) 14.8 15.5 11.6 14.1 13.3 
University (%) 22.8 22.6 5.1 35.0 58.4 
Religion: Christianity (%) 18.3 20.1 0.7 12.8 57.6 
Buddhism/Taoism (%) 44.2 57.4 0.2 0.8 20.8 
Islam (%) 14.7 0.4 98.7 21.7 9.2 
Hinduism (%) 5.1 - 0.1 58.9 0.8 
Other Religions (%) 0.7 0.37 0.1 4.6 1.1 
No Religion (%) 17.0 21.8 0.2 1.1 10.6 

Table 1: Socio-economic differences between ethnic groups in Singapore in 2010. Source Singapore 
Department of Statistics (2011). 
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  Estimate Std. Error 
Proportion of NC individuals at birth 𝑝!"  0.539 0.0068 
Proportion of NA individuals at birth 𝑝!# 0.272 0.0062 
Proportion of AC individuals at birth 𝑝#"  0.189 0.0018 
Transition prob. ‘No Cancer’ to ‘Early Stage’  𝜆$% 0.00037 0.00004 
Transition prob. ‘Early Stage’ to ‘Late Stage’ (>45yo) 𝜆%&'  0.190 0.0140 
Transition prob. ‘Early Stage’ to ‘Late Stage’ (≤45yo) 𝜆%&(  0.113 0.0070 
Probability of Screening, given ‘No Cancer’ 𝛾%(𝑐)* = 𝑆$) 0.00076 0.00007 
Probability of Screening, given ‘Early Stage’ 𝛾%(𝑐)* = 𝑆%) 0.00076 0.00489 
Screening probability adjustment factor for NA vs NC 𝛾&(𝛼)* = 𝑁𝐴) 9.144 0.3862 
Screening probability adjustment factor for AC vs NC 𝛾&(𝛼)* = 𝐴𝐶) 51.400 2.2646 
Screening probability adjustment factor for Malays 𝛾+(𝛼)* = 𝑀) 0.644 0.0033 
Time trend 𝜏% 1.029 0.0102 
Trend 2004 𝜏& 1.357 0.0067 
Trend 2006 𝜏+ 1.236 0.0061 
Trend 2012 𝜏, 0.807 0.0044 
Hazard rate of death, given ‘Early Stage’ 𝜌% 0.002 0.0001 
Hazard rate of death, given ‘Late Stage’ 𝜌& 0.003 0.0001 
Hazard rate of death, given ‘Unknown Stage’ 𝜌- 0.002 0.0001 

Table 2. Parameter estimates – all transition and screening probabilities are month-to-month. Standard 
errors are calculated using standard MLE sandwich formula. 

 

Cancer detections per 100,000 (first diagnosis) 
Screening 
coverage 

Early-stage 
NA 
(A) 

Early-stage 
AC 
(B) 

Late-stage 
AC 
(C) 40y-49y 

Late-stage  
AC  

50y-59y 
Mortality 

60y-69y vs 5% coverage 
per 100,000 

5% 3.8 7.4 98.8 83.4 102.9 112.5 - 
10% 7.7 14.5 92.8 80.0 95.8 104.2 -0.4 
15% 11.9 21.4 87.1 76.5 89.2 96.6 -0.8 
20% 16.6 27.6 82.0 73.7 83.0 89.3 -1.3 
25% 22.2 33.7 77.2 70.9 77.1 82.8 -1.7 
30% 28.3 38.9 73.4 68.6 72.6 77.7 -2.0 
35% 35.5 43.4 70.3 66.7 69.0 73.7 -2.3 
40% 43.1 46.9 68.2 65.6 66.5 70.6 -2.6 
45% 50.7 49.7 66.7 64.9 64.8 68.2 -2.8 
50% 57.9 51.9 65.7 64.5 63.8 66.6 -3.0 
55% 63.8 53.6 64.9 64.2 63.1 65.4 -3.1 
60% 68.3 54.9 64.4 64.0 62.5 64.7 -3.2 
65% 70.8 55.6 64.1 63.8 62.1 64.3 -3.3 
70% 72.0 56.0 63.9 63.8 61.9 64.1 -3.3 
75% 72.4 56.0 63.9 63.8 61.9 64.0 -3.3 
80% 72.5 56.1 63.9 63.8 61.9 64.0 -3.3 
85% 72.5 56.1 63.9 63.8 61.9 64.0 -3.3 
90% 72.5 56.1 63.9 63.8 61.9 64.0 -3.3 
95% 72.5 56.1 63.9 63.8 61.9 64.0 -3.3 

  Screening every year (double frequency)   
50% 59.2 73.4 45.9 47.5 43.1 44.1 -4.7 

Table 3: Composition of screened types, detection and overdiagnosis. 
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Cancer detection per 100,000 (first diagnosis) 
 Screening 

coverage 
Early 
stage 
NA 
(A) 

Early 
stage 
AC 
(B) 

Late stage 
AC 

 
(C) 

Late stage 
AC 

60y-69y 

Mortality 
vs 5% 

coverage  
per 100,000 

Constant 
screening regime 

25% 22.2 28.9 81.6 90.6 -1.9 
50% 57.9 50.0 67.4 69.4 -3.5 
75% 72.3 56.0 63.9 64.0 -4.0 

Stochastic 
screening regime 

25% 22.2 33.7 77.2 82.8 -1.7 
50% 57.9 51.9 65.7 66.6 -3.0 
75% 72.4 56.0 63.9 64.0 -3.3 

“Always” 
screening regime 

25% 22.2 35.7 75.4 79.9 -1.7 
50% 57.9 51.9 65.7 66.6 -2.8 
75% 72.4 56.0 63.9 64.0 -3.2 

Table 4. Composition of screened types, detection, and mortality -- changing types do not start screening. 
 

Cancer detection per 100,000 (first diagnosis) 
 Screening 

coverage 
Early 
stage 
NA 
(A) 

Early 
stage 
AC 
(B) 

Late stage 
AC 

 
(C) 

Late stage 
AC 

60y-69y 

Mortality 
vs 5% 

coverage  
per 100,000 

Homogeneous 
25% 21.7 34.2 76.9 84.9 -1.9 
50% 57.6 52.8 65.0 68.8 -3.4 
75% 73.2 57.2 63.1 65.8 -3.8 

40-43yo 
25% 22.1 34.0 77.5 82.7 -1.8 
50% 57.8 52.3 66.0 66.3 -3.1 
75% 72.3 56.4 64.2 63.8 -3.4 

40-45yo  
regime 

25% 22.2 33.7 77.2 82.8 -1.7 
50% 57.9 51.9 65.7 66.6 -3.0 
75% 72.4 56.0 63.9 64.0 -3.3 

40-47yo 
25% 22.3 33.6 76.4 83.1 -1.6 
50% 58.1 51.8 64.9 67.1 -3.0 
75% 72.6 55.9 63.1 64.4 -3.2 

Table 5. Composition of screened types, detection, and mortality -- changing types always 
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Cancer detection per 100,000 (first diagnosis) 
 Screening 

coverage 
Early 
stage 
NA 
(A) 

Early 
stage 
AC 
(B) 

Late stage 
AC 

 
(C) 

Late stage 
AC 

60y-69y 

Mortality 
vs 5% 

coverage  
per 100,000 

X=-0.1 
25% 23.3 30.9 90.2 89.2 -1.3 
50% 38.9 43.4 80.9 77.6 -2.2 
75% 39.3 43.5 80.8 77.5 -2.3 

X=-0.05 25% 22.6 28.7 87.7 87.5 -0.4 
50% 37.2 40.4 78.9 76.9 -0.8 
75% 37.7 40.6 78.8 76.7 -0.8 

X=-0.01 25% 23.3 32.8 77.4 81.6 -1.5 
50% 56.9 50.1 66.2 66.0 -2.8 
75% 64.9 52.4 65.2 64.6 -3.0 

X=-0.005 25% 22.5 33.1 77.5 82.4 -1.6 
50% 57.2 50.7 66.1 66.6 -2.9 
75% 67.7 53.8 64.8 64.7 -3.2 

X=-0.001 
25% 22.1 34.0 76.7 82.5 -1.7 
50% 57.7 52.3 65.0 66.3 -3.0 
75% 71.4 56.2 63.4 63.8 -3.3 

X=0.001 
25% 22 34.1 77.2 83.2 -1.7 
50% 58.1 52.6 65.4 67.0 -3.0 
75% 73.7 57.0 63.6 64.1 -3.3 

X=0.005 
25% 20.6 38.7 75.2 83.7 -2.4 
50% 57.7 58.3 62.6 66.6 -4.2 
75% 80.8 64.8 59.9 62.5 -4.7 

X=0.01 
25% 17.9 45.7 75.3 85.8 -3.5 
50% 54.2 66.3 61.8 67.5 -6.0 
75% 86.3 74.9 58.4 62.0 -6.5 

X=0.05 
25% 15.8 62.3 65.7 80.1 -6.1 
50% 50.0 80.8 54.1 63.8 -9.6 
75% 88.3 90.4 50.9 58.5 -10.4 

X=0.1 
25% 21.6 62.8 58.3 75.1 -5.6 
50% 63.3 78.9 49.9 62.3 -8.7 
75% 107.2 90.0 46.2 56.3 -9.4 

Table 6. Composition of screened types, detection, and mortality for different baseline rates. 
 


